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Abstract. The magnetic field produced in a plane conductor by a non-relativistic line charge 
moving parallel to the face is examined on the basis of classical electromagnetic theory. 
It IS discovered that, at a fixed speed less than the local speed of light, skin effect is not a 
significant feature and the magnetic intensity decays algebraically rather than exponentially 
with distance from the face of the conductor. The multiplying factor does, however, depend 
upon the conductivity and becomes zero for a perfect conductor. For Cerenkov radiation, 
on the other hand, the position is reversed; skin effect is dominant and the attenuation is 
exponential. This result may affect the interpretation of the Aharonov-Bohm effect which 
is currently under discussion. 

1. Introduction 

In experiments concerning the Aharonov-Bohm effect (Aharonov and Bohm 1959) 
electrons travel near to microsolenoids or magnetic whiskers and thereby induce 
certain fields. Usually the effects are not attributed to classical electromagnetic forces 
(Bayh 1962), primarily because it is thought that the magnetic fields cannot penetrate 
det-p enough into a conductor. The analysis (Kasper 1966) is essentially based on the 
phenomenon of skin effect which clamps the fields into a neighbourhood of the surface 
of the conductor, at any rate when the frequency of excitation is high enough. However, 
for a moving particle many frequencies are present and some of them may be low enough 
to invalidate this conclusion. For this reason Boyer (1974) decided to re-examine the 
classical electromagnetic problem when the speed of the particle is very small and 
formed the opinion that the fields in the conductor, far from being confined to the surface, 
did in fact permeate for a very considerable distance. As a consequence he has sug- 
gested (Boyer 1973) that classical electromagnetic forces might be involved in the 
Aharonov-Bohm effect. 

The analysis of Boyer assumes that the permittivity and permeability of the con- 
ductor are the same as those of the surrounding medium. On this basis he concludes 
that there is no skin effect in the conductor and that both the magnetic field and current 
density in the conductor are independent of the resistivity. It is desirable to know to 
what extent these conclusions rest on the assumptions. In other words, would changes 
in the permittivity and permeability or the velocity not being vanishingly small cause 
significant alterations to the predictions? 

Accordingly we consider the problem of a non-relativistic charge moving parallel 
to a plane conductor with general material constants. To simplify the analysis we 
assume that the charge is distributed along a line moving perpendicular to itself. It is 
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not expected that employing a line charge instead of a point charge will produce such a 
substantial effect as converting an exponentially diminishing field into one with algebraic 
decay. 

Qualitative agreement with Boyer’s conclusions is found in that skin effect is not the 
fundamental phenomenon and the diminution of the magnetic field is algebraic rather 
than exponential, There are, however, substantial differences in detail. The rate of 
attenuation is more rapid than that specified by Boyer and the magnetic intensity does 
depend upon the resistivity with the net effect that it will tend to be appreciably smaller 
than would be deducedfrom Boyer’s analysis. The differences are not due to the change 
in material constants but stem from the speed of the charge not being infinitesimally 
low. If the speed is allowed to approach zero Boyer’s results are recovered. In other 
words the low speed phenomena form a special limiting case. 

If we consider the other extreme, of increasing speed, the algebraic behaviour 
continues while the speed of the electron is less than the speed of light of the medium in 
which it is progressing, even if it is faster than the speed of light in the conductor. When 
the charge is travelling at a speed in excess of the speeds of light in both media the situa- 
tion is totally altered. Now skin effect is dominant and the magnetic field decreases 
exponentially in the conductor. To put it another way, Cerenkov radiation does not 
penetrate far into a conductor on non-relativistic classical theory. 

Thus to achieve greater magnetic intensity in the conductor one should increase the 
speed of the charge so long as it remains less than the local speed of light. However, no 
attempt has been made to investigate whether there is an optimal speed, so this must 
be regarded as a rough rule applicable to low speeds but not necessarily working for the 
whole speed range. 

The mathematical formulation of the problem is given in $ 2 and an exact solution 
found in terms of a Fourier integral. The integral is evaluated asymptotically in $ 3  
for points of observation in the conductor which are well away from the interface, under 
the assumption that the charge is moving at less than the speed of light in either medium. 
The modifications that are necessary when the speed of the charge is (a)  greater than the 
speed of light in the conductor but less than that in the other medium, (b)  greater than 
both speeds of light, are discussed in $ 4. 

2. Formulation 

Let a line charge parallel to the x axis be moving in the direction of the positive z axis 
with constant speed U in the plane y = - b (b > 0). Assume that the medium is non- 
conducting, homogeneous and isotropic. Let the permeability and permittivity be ,L[ 

and t respectively, SI units being used throughout. Then Maxwell’s equations are : 

SH 
F t  

curl E + p -  = 0 E div E = Q S ( y  + b)6 ( z  -- u t )  

?E 
2t 

curl H - c -  = QuG(y+b)6(z-ut)k div H = 0 

where Q is a measure of the charge on the line, k is a unit vector parallel to the 2 axis 
and 6(x) is the usual Dirac 6 function. 

The conductor occupies the space y 2 0 arid its permeability, permittivity and 
conductivity are p ,  , t 1  and 0 respectively. These quantities are assumed to be constant 
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and frequency-independent. The charge density in such a conductor decays exponen- 
tially from its initial value in a manner independent of any excitation. There is, therefore, 
no loss of generality in assuming it to be zero. With this understanding, Maxwell's equa- 
tions in the conductor are : 

i?H 
curl E + p , t  = 0 div E = 0 

2E 
curl H -  c1- = oE div H = 0. 

at 

The line charge does not produce any electric field parallel to itself or any magnetic 
field in the (y, z )  plane. Since the presence of the conductor does not cause the generation 
of any such fields we may assume that the components E, ,  H, and H, are always zero. 
Also, all other field components may be taken as independent of x. 

Denote by small letters the Fourier transforms of the field components with respect 
to time so that, for example, 

e, elw' dw. 

Then in view of the foregoing remarks equations (1) become 

2hx 
- = ioce, 
?Z  

A solution of these equations is provided by 

h,  = U 

e, = -(l/iwc)[Bu/2y+Q6(y+b) 

e, = (l/iwc)?u/i?z 

so long as 

Z 2 U  22u  w 2  
-+$ ,+~u+Qd' (y+b)e- ' "" '  = 0, Zy2 cz c 

where c = l / ( p ~ ) " ~  is the speed of light in the medium. 
The Fourier inversion theorem implies that 

e,(w) = E ,  e- iwr  dt. s_: 
Because E,  is real, 

e,(-w) = {e , (o) )*  (4) 

where the star indicates a complex conjugate. Thus values of ey for negative o can be 
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deduced from those for positive o via (4). Alternatively 

E,  = Re- ' J ey eio'dw. 
n o  

In any event negative values of o can be excluded from the following discussion. 
A particular solution of (3) is 

uo = - )Q  sgn ( y + b )  e-wCi:+PIy+bl)ic 

where p = (1 -u2/c2)I1', while sgn x is 1 if x > 0 and - 1 if x < 0. With U < c the con- 
stant ,L? is chosen as positive. The solution uo corresponds to the field produced by the 
moving charge in the absence of the conductor. 

To take account of the presence of the conductor we put U = uo + u2 in y < 0. 
Then u2 satisfies (3) with Q = 0 and, since it has the same z dependence as u o ,  must 
have the form 

u2 = ~ ~ - w ( i z - P y ) ~ ~  

in order to behave properly as y + - x. 

u 1  satisfies 
In the conductor let h, = u1 where, by an analysis similar to that used in deriving (3), 

on account of (2). Here c1  = l / ( , ~ ~ c , ) ~  
u1 the same z dependence as u2 supplies 

is the speed of light in the conductor. Giving 

B e - I O Z / C  - I < )  U ,  = 

where 

By 5 is meant that square root of i2 which has a negative imaginary part. Then u 1  has 
the appropriate behaviour as y + x. 

The boundary conditions for U,, u 2  at the interface y = 0 stem from the continuity 
of E ,  and H,. They are 

a W €  au,  
7 ( u , + u , )  = ~ - 
OY o c l - i i b  i?y 

There results 

A = [ 1 + (2/a)]$Q e-"Bb'" 

B = (Q/r)e-wfib'C 

where 
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The consequent expressions for the magnetic field caused by the conductor are, from (9, 

and the electric field can be deduced in a straightforward manner. 
I t  is certainly not immediately evident from these formulae that the magnetic field 

in the conductor is independent of the resistivity so they will be examined in more detail 
in the next section. 

3. The distant field 

Note first that ct cannot vanish for real w if c # 0, which will always be assumed. There- 
fore, there is no  difficulty of interpretation with the integrals. 

Next an investigation of the field as y -+ x will be sufficient to tell us whether there 
are any terms which are not exponentially damped and hence not in accord with the 
behaviour of skin effect. Therefore, we shall consider the asymptotic form as y + a. 

I t  may be helpful if  the integral for H ,  in y > 0 is cast into non-dimensional form by 
replacing w by cz/b. Then 

where 

T = pt/b Z = z /b  Y = Jl/b 8 = aplcb 

v 2  = T2(C2!Ct - 1)- i8T = - T2p: - 18T.  

Attention will first be concentrated on the case when p: > 0. ie c < c1 so that the 
charge is travelling at less than the speed of light in the conductor. Let T~ be fixed and 
define the positive b by 

Then Re(iq) k 6 ~ ~ ' ~  for T 2 r 0 .  Hence 

K being some finite constant. Consequently 

Therefore the integral over T 2 T~ produces a term which decays exponentially as 
Y + x so long as 6 is nonzero. However, 6 cannot be zero i f  at least one of p1 and 8 is 
nonzero, which will certainly be true provided that the conductivity does not vanish. 
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Since exponentially small fields are of no concern in this investigation they will be 
neglected. Accordingly, as Y -, x. we can write 

Now suppose that T~ has been chosen so that 70  << 8, which is clearly permissible 
unless t' -, 0. Then both a and q can be expanded about 7 = 0 with the result that 

where v = 01'2Yen''4. 
To estimate the integrals in (8) consider 

where n is a non-negative integer. If  the interval of integration be extended to infinity 
the error produced is certainly O(e-"b '). Such an error should be neglected as Y + cc 
for consistency with the derivation of (7) where exponentially damped terms were 
omitted. Therefore 

1, = Jb: T f l / 2  elT(T-zl-bt d T  

to  our order of accuracy. 
Let B-icT-Z) = p e-'b where p is positive and -in < 4 < ~ T C .  Make the sub- 

stitution 7 = w2 and then deform the contour of integration in the w plane into the 
radial line making an angle i4 with the real axis. There results 

Put a = i v  eib/2/p''2 and change the variable of integration via w = (E.-a)/p'". 
Then 

I t  is a standard result (see, for example, Abramowitz and Stegun 1965) that as (a(  + x 
with (arg a1 < in,  

The conditions on a are met as Y -+ x since arg a = $n + 4. 
Employing ( 9 )  in (8) with n = 0, 1 and 3 we obtain 

the estimate for the third term in (E), being valid because putting T = 2 (4  = 0) and 
replacing v by ( ~ l / ~ / 2  does not affect the rate in (9)  at which I ,  tends to zero as Y -+ CO. 
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Hence 

as Y -+ x. Exponentially attenuated terms have been ignored and could in any case 
be regarded as included in the order term of (10). 

I t  is evident from formula (10) that verification has been achieved of Boyer's state- 
ment that the magnetic field in the conductor falls algebraically rather than exponentially 
so that skin effect is not the dominant phenomenon. However. there is disagreement on 
the actual rate ofdecay and, moreover, the field is dependent on the conductivity contrary 
to Boyer's prediction that the magnetic intensity does not involve the resistivity. The 
reason for the discrepancy is that Boyer's analysis refers to the limiting case c -+ 0 
whereas that possibility is excluded in our derivation of (8). If L' -, 0 so that 6 + 0, (7) 
continues to hold but (8) is replaced by 

when all terms which have quadratic or higher powers of L' are omitted. Hence 

QL' H ,  = -Re--[Y-i(T-Z)]-' nb 

exponentially diminishing terms being again neglected. Formula (1 1) effectively agrees 
with that given by Boyer. 

It is, however. important to realize that (1 1) is derived as c + 0 with other quantities 
held fixed, whereas (10) is relevant for y /b  -+ x while other entities remain constant. 
If  for instance we consider what happens as o + x so that the conductor becomes 
perfect, (11) indicates that there will be a magnetic field in the conductor but (10) says 
there will be none (even the order term vanishes because a -+ x). This is because in 
the former case 0 -+ 0 while in the latter 0 -, z. Of course 0 -+ 0 as I: -+ 0 and o -+ x 
can be attained only if  o -+ x slower than L' approaches zero-a rather tight restriction. 
In general (10) would seem to be the better formula to follow because of the constricted 
range of validity of (1 1). 

4. Cerenkov radiation 

The magnitude of the magnetic intensity in the conductor contains the conductivity 
in the denominator according to (10) and so may be rather small for a good conductor. 
It may be raised by increasing U .  But then the possibility that U > c1  occurs and with i t  
the potentiality for Cerenkov radiation in the conductor (see, for example, Jones 1964). 
It is of interest to check whether this has any significant influence on the field. Therefore. 
we now consider the case where c > t' > c1.  

Equation (6) is still valid but now 13: is negative. Let P: = - K : .  icl being positive. 
Then for T 2 T~ 

Re(iq) 2 T ~ ~ ~ [ ( T : K ~  + 62)112 - T ~ K : ] ~ / ~  
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and so exponential attenuation again arises for r 2- r o .  Thus (7) and hence (10) continues 
to hold, at any rate so long as fl  does not become too small to invalidate the asymptotic 
argument. Consequently there is no change to the formula for the field in the conductor 
whether or not Cerenkov radiation might take place, as far as a non-relativistic treatment 
is concerned. 

Suppose now that an even larger speed is contemplated so that t’ > c and Cerenkov 
radiation might be involved in both media. In that case the formulae at the end of 0 2 
are still satisfactory provided that p is altered to i K  where K is real and positive. Bearing 
in mind (4) we obtain for the field in the conductor : 

where now the path of integration passes below the branch line joining the origin and 
iO/K:, q being defined to be positive as 7 + x. 

The manipulation is somewhat simplified by writing 

H = -+--- dr. 
(:T ::)2%[yz z(r - fie/K:) 

e ~ r ( T  - Z) - i q Y  - k r  

I t  is evident that, since the only zero of ci in the complex T plane lies on the positive 
imaginary axis, no field is present in the conductor until 

T > Z + K ~ Y + K ,  (12) 

which is to be expected since the wave system is spearheaded by the charge. 
Change the variable of integration by r = ($O,’Kf)(w+ 1) and then 

where d = folk-:. ( w 2  - 1)”’ is positive as M.’ -+ rc. and 

(.J - 1)m E , K  m b  
a0 = __- b0 CKl cd bo = z =  - 1  

00  - bow 

When (12) is satisfied the path of integration can be deformed into a closed contour C 
enclosing the branch line and any poles. Applying the differential operator we obtain 

H being the Heaviside unit function which is unity when (12) holds and zero when the 
reverse inequality is valid. Deform the contour C into the ellipse M’ = cos(ii.- I(/) where 
the positive 1 is defined by 

cosh 1. = ( T -  z - K)/[( T -  z - K ) 2  - K: Y 2 ]  ”’. 
The exponent in the integrals becomes 

- d ( T -  Z - K ) - d [ ( T -  z- K ) 2  - K :  Y2l1’’ cos I(/ 
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and to each integral is added a contribution from the pole due to the zero w = wo of 
rl ifcosh; < wo. 

In the second integral of (14) we are concerned only with T = 2 + K + K~ Y and then 
1 becomes infinite. There is n o  contribution from the pole and the integral may be 
evaluated easily. Hence the part of H, stemming from this term is 

As regards the first integral of (14) i t  is evident from the above analysis that it does not 
exceed a term of order 

expi -d(T-  z - K ) + d [ ( T -  z - K)'-  K :  Y2]1'2). 

Therefore, at a fixed location in space the magnetic field decreases exponentially as time 
increases after the passage of the wavefront. Consequently the field can be regarded as 
exponentially small except in a neighbourhood of the wavefront. Near the wavefront 
the first term of (14), by a similar analysis to that for the second, contributes 

Thus the wavefront part of the magnetic intensity is given by 

and even this exhibits exponential decay with increasing distance from the interface. 
I t  may therefore be concluded that when the charge is travelling faster than the speed 

of light in either medium, the magnetic intensity falls off exponentially in the conductor 
as compared with its value at the boundary and also with distance behind the wavefront. 
This is not surprising because the energy of the incident wave is concentrated on the 
arms of the Mach wedge and so its spectrum is mainly in the high frequencies. Thus 
skin effect will be a significant phenomenon and one can expect the best concentration 
of energy in the conductor to be near the surface. 

Broadly speaking, then. non-relativistic classical electromagnetic theory predicts 
that the largest magnetic intensity occurs in the conductor when the charge is moving 
at less than the speed of light in the incident medium and, in so far as (IO) is valid for the 
entire range, when its speed is the highest possible consistent with this condition. 
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